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The several-channel N-over-D method for pion-pion scattering in the variational framework proposed by 
Kreps et al. is modified to provide for a better controlled procedure of parameter variation. The choice of 
channels is such that the ghost constraints can be imposed for isospin T=0 without introducing any param­
eters other than those specifying the coupling between channels. The crossing relations yield a condition on 
the T=0 and T = 2 full amplitudes which can then be studied by means of a thorough computer search among 
the parameters. The s-wave ghost is found to be at s = —40. The s-wave scattering lengths are computed and 
the s- and d-wave phase shifts are determined. As in the earlier model, the s waves are found to be repulsive 
and the T=0d wave shows no /° resonance. Another choice of trial functions is discussed and illustrated by 
means of a model of scalar meson scattering. 

1. INTRODUCTION 

RECENTLY, a method departing from the fre­
quently adopted bootstrap philosophy has been 

presented for a unitary calculation of pion-pion scat­
tering.1 Reference has already been made in I to other 
approaches to the problem so these will not be cited 
again here. The central part of the method described 
in I is a variational procedure performed to optimize 
the fit to the crossing relations; the content of this 
paper is a modification of that method providing for a 
much more easily controlled variation of the parameters 
of the model. 

As in I, the many-channel N-over-D method is used 
for the construction of unitary amplitudes. Here a 
different choice of inelastic channels is made; it is the 
selection of these channels, in particular the selected 
number of them, which brings the variation of parame­
ters in the isospin T=0 and T==2 channels under 
control. This will be described in Sec. 2 along with a 
brief reiteration of the techniques introduced in I. 
After the parameters have been determined to optimize 
the fit to the crossing relations within the framework 
of this model, the phase shifts can then be calculated. 
In Sec. 3 the s- and d-wave phase shifts for 2n=0 and 
T= 2 are given along with the s-wave scattering lengths. 
In Sec. 4 a discussion is given of possible other trial 
functions which might be useful in this model. 

2. METHOD 

To best illustrate wherein the proposed improvement 
on the model of I lies, it is appropriate to sketch briefly 
the methods described in I. 

The channels chosen to couple via unitarity to the 
(WIT) channel (channel 1) were taken to be (pp) in 
T=0 and T = 2 , and (TTCO) in T = l . The partial wave 
amplitudes were written in matrix form as: 

Mi^^h^^Ni^Di^-W^112 (1) 

in which the elements of the diagonal matrix h{T) were 

* Supported in part by the National Science Foundation. 
1 R . E. Kreps, L. F. Cook, J. J. Brehm, and R. Blankenbecler, 

Phys. Rev. 133, B1526 (1964). This work will be referred to as I 
in the subsequent text. 

the Khuri threshold factors appropriate to the various 
channels. The elements of the matrix Ni were taken to 
be /-independent and represented the trial functions 
for a variational calculation to satisfy the crossing 
relations for pion-pion scattering: 

^ n ( 0 ) (s,t,u) = W n<0> (t,s,u)+MnV (t,s,u) 

+ ( 5 / 3 ) M n
( 2 ) ( ^ ) , 

Mn
(1) (s,t,u) = Wn(0) (t,s,u)+iMna) (t,s9u) 

-p fn< 2 > (*,*,«), (2) 

M n
( 2 ) (s,t,u) = JJIf u w (t,s,u) ~ iMu(1) (t,s,u) 

Born approximation suggested suitable trial functions; 
the procedure then reduced to varying all the multi­
plicative parameters in N. The ghost constraints were 
applied to reduce the number of parameters: the re­
quirements were imposed that 

awr-<>>(s==o)=o, (3) 
corresponding to the Pomeranchukon on the vacuum 
trajectory,2'3 where 

(4) 
and 

S>*<r> = detZ>i<r>, 

2 W r = 0 ) ( * = ^ ) = 0, (5) 

corresponding to the ghost on the vacuum trajectory, 
and finally 

9 W r = 0 ) (*=*.) = 0, (6) 

corresponding to the vanishing of the residue at the 
ghost in each element of the matrix 9l0

<0) denned by 

N^W^'^n^/^i (T) (7) 
The value of sg was determined in the search. Imposition 
of the constraints (3), (5), and (6) called for the intro­
duction of additional parameters4 for which one had 

2 1 . I. Pomeranchuk, Zh. Eksperim. i Teor. Fiz. 34, 725 (1958) 
[English transl.: Soviet Phys.—JETP 7, 499 (1958)]. 

3 G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 8. 41 
(1962). 

4 These parameters were denoted in I by s^T) and s^T\ and 
were incorporated for generalitv into all three isospin channels. 
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very little feeling as to their value and for which 
physical significance was lacking. 

I t is the purpose of this paper to apply the philosophy 
of I introducing only the multiplicative parameters of 
the N matrix which are in a sense physical since they 
measure the coupling between channels; furthermore, 
it is imperative that the number of parameters treated 
be sufficiently small as to allow a thorough search pro­
ducing the best possible fit within the model. 

Let the choice of inelastic channels be as follows: in 
isospin T=l use (iroo) states (channel 2), and (KK) 
states (channel 3); in T = 0 use (KK) states and also 
(rjrj) states (channel 4); in T~2 use no inelastic states. 
The selection of three T=0 channels precludes the 
need for additional parameters. The number of inde­
pendent 2"=0 parameters after imposing the ghost 
constraints (3), (5), and (6) is two and, with only a 
single T~ 2 parameter, allows a very thorough search in 
fitting the relation5 

A<°> = — 2A(2>. (8) 

For a study of low and medium energy pion-pion 
scattering this choice of states would seem more 
appropriate than the selection made in I. The fact that 
T= 2 scattering is taken here to be a one-channel 
problem was suggested in the analysis of I where it was 
found that (TIT) and (pp) preferred to uncouple. This 
choice of channels also does not call for any model of 
the inelastic spin dependence of the sort developed in 
I for the (pp) states. 

The Khuri threshold matrices in Eq. (1) are 

* < ° > = 

h<» = 

Ai 
0 
0 

hi 
0 
0 

0 
h 
0 

0 
h2 

0 

0 
0 
hi 

0 
0 

fa 

(9) 

A ( 2 ) =( /* i ) , 

in which, for each i, the his are related to the c m . 
momenta pi by 

p*=4Ju/0--h)* (10) 

Equation (1) therefore displays the correct threshold 
behavior of the partial waves and, as pointed out by 
Khuri,6 the asymptotic I behavior given in (1) yields 
the correct two-particle thresholds of the summed 
amplitudes in the crossed channels. That this is true 
for the diagonal elements of the amplitude (and only 
these) can be seen by looking at first Born approxi­
mation: if Di,i/T) = dij then the diagonal summed 
amplitudes become, under the assumption that N(T) 

6 As in I the A's are defined by: 

A<r> (s,t) =Mu<T) (s,t) ~MUW (t,s). 
• N. N. Khuri, Phys. Rev. 130, 429 (1963). 

is /-independent: 

MiiBm™ = Z (2l+l)(hii^)lNu{T)Pi(cosd). (11) 
i 

For the identical particle channels the sum is over even 
I for T = 0 and T = 2 , and over odd I for T=l. The 
results are 

MllBam<r) = 4iVll-
1+Ai 

( i - / y l ( 4 - / ) 

I 

V/2 :]• 

MjjBQin^ = SNjf 

1+hj 1 

(1-Ay)' (i-t) 3/2 ' 

(4-«)8 /2 . 

[even 

odd 

(12) 

1+h r 1 l - i 

(l-/z4)2L(4-03/2 (4-^)3/2J 

T=0. 

As pointed out in I, the use of the Khuri factors also 
leads to the correct thresholds of the respective imagi­
nary parts in second Born approximation; i.e., the 
imaginary parts are singular on the relevant Mandel-
stam spectral curves. 

Equations (12) suggest the trial functions to be 
adopted in this model: 

in which the FiT)'s are diagonal matrices with elements 

F « ( r ) = ( l - A < ) 2 / ( 1 + * * ) , (14) 

with i = l , 3, 4 for T=0, i = l, 2, 3 for r = l , and i = l 
for T = 2 . The matrices a{T) contain the parameters to 
be varied such that the fit to Eqs. (2) by the partial 
wave sums is optimized: 

(15) 

««•>= 

a»> = 

« i«» 
c(0) 

d<°> 

U i ( 1 > 

JO) 
c»> 

o») = ( « ! « ) . 

Unitarity requires that 

ImD, < r ) _ _ 

c<°> 
a3<°) 
e(0) 

fid) 

0 
/ ( 1 ) 

- / * < * ) 

<*»> 
e<o) 

0 

c«> 
fv 

<Hm 

lN(T (16) 

where p is the usual diagonal matrix of phase-space 
factors pi written as7 

Pi=pi/(2sli*) = h^i»/\jlit(l-h{)2. (17) 
7 As pointed out in I, factors of 2TT, etc., in the phase-space factors 

are irrelevant and can be regarded as absorbed into the parameter 
matrix a^T\ 
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The elements of D^T) then are 

D^-dij-H^^aij^, (18) 

1 r M hin+n-hif 
where 

BiW(s) 
1 r00 ds' hi' 

T J si s'—s sr ̂  1+h/ 
(19) 

The problem of determining T=0 and T = 2 pion-
pion scattering is carried out now by varying parameters 
to fit Eq. (8). This would involve a search over six 
parameters, as can be seen from expression (15). The 
ghost constraints reduce the number to three inde­
pendent parameters for which a computer search can 
be readily carried out. 

The ghost constraints in the T = 0 channel are im­
posed as follows. The Pomeranchukon at s = 0 for 1= 1 
calls for: 

SD ô) (0) = [1 -P1(a1^+d^2PA] 

X [ l - P 3 ( a 3 ( 0 ) + e(°)2P4)] 

= 0 (20) 

in which the i \ ' s are defined to be: 

P ; = # ^ > ( 0 ) . (21) 

The ghost at s = sg for / = 0 calls for 

3V0) (sa) = [1 -Gi(0i<°>+<*<°>2G4)] 
X[ l -G3(a3 ( 0 ) +^°) 2 G 4 ) ] 

-GiG8(c
(0)+<*<0>*<°>G4)2 

= 0 (22) 
in which 

Gi=E^^(sg). (23) 

In order that the residue of M"0,n
(0) vanish at s = sg it 

is necessary that 

9lo,ii(0) = C ( l - ^ i ) 2 / ( l + ^ i ) ] { ^ i ( 0 ) + ^ ( 0 ) 2 ^ 4 ) 
X[ l -G 3 (a3 ( 0 ) +e ( 0 ) 2 G4)] 

= 0 , (24) 

and similarly for M0 F33 ( 0 ) 

9lo,33(0) = [ ( l - ^ ) 2 / ( l + f e ) ] { ( a 3 ( 0 ) + 6 W 2 G 4 ) 
XLl-dia^+d^G*)! 

+G1(c^+d^e^G4)
2}. 

= 0. (25) 

These relations imply that 

l-G3(03(o)+e<o>2G4) = O, 

1 - G i ( a i ^ + ^ ^ 2 G 4 ) = 0 , (26) 

c(o ) + j(o) e(o)G 4 = = 0 j 

and furthermore, once these are established, all other 
elements of 9lo;^

(0) vanish at s—sg as well. The total 
number of independent T=0 parameters is reduced to 
two of which sg is one and a3

(0) is arbitrarily taken as 

the other. In terms of these the other T=0 coupling 
parameters may be written: 

aico)=_|i+(i-,1)rj!i_+«!!_.(1-fl8(o)p8)]) 
P i I Ll-774 1-773 J J 

l - 0 i < ° > G i l - 0 8 ( o ) G 8 

U ' ' -

J(0)2 = 

• > ( 0 ) 2 _ 

eK — 

Gi 

1 - a i ^ G i 

G1G4 

1-<Z3(0)G3 

G3G4 

in which the ??/s a n 

G3 ' 

1 defined by 

7)i=Pi/G, 

(27) 

(28) 

The search over the remaining three parameters in 
fitting (8) is carried out as in I. A grid of 21 (s,t) points 
in the region 0 < s < 4 , 0<t<s is taken. For each (s,t) 
Mu(T)(s}i) and Mn

iT)(t,s) are computed for T=0 and 
for T= 2 by summing a large number of the even partial 
waves. The quantity ^02 is computed where 

^ 0 2 = -

1 |A<°>+2A (2) 2 

^JlN (5,0 [A (0)2+44 (2)2-11/2 
grid 

(29) 

in which N=21. As explained in I the partial waves 
cannot be summed for / > 4 since 2=4 is a threshold 
above which the series diverges. For ̂ < 0 all the partial 
waves are complex but must be summed to give a real 
amplitude as long as s>~t; ignorance as to how this 
should be done confines the search to ̂ > 0 . 

Once this has been done the burden of fitting the 
remaining crossing relations rests on the T= 1 channel. 
To carry this out a 5-parameter search is called for and 
no device is suggested here to improve on the techniques 
employed in I. To make a search as thorough as in the 
T=0 and T=2 cases would be far beyond the limits of 
reasonable computer time. I t is, however, safe to con­
clude from the experience in I, that ^ ' s relevant to 
T— 1 could be found which are as small as the minimum 
value of ^02 found here. 

One might contemplate fitting the crossing relations 
by this method in the other channels, e.g., application 
to the amplitude M"44

(0). On the face of it this would 
seem to be simply a search through the two T=0 
parameters in an effort to make Af44

(0) a symmetric 
function of s and t. Such a search is impossible by this 
method for the same reason that the Mn(T) search is 
impossible for s<0. One is confronted with partial 
waves whose left-hand cuts begin to the right of s = 4. 
The summed amplitude must be real in a region below 
s = 4: but it is not clear how to perform the sum. 
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FIG. 1. Regions of 
allowed values of sg 
and a3

(0). 

3. RESULTS 

Inspection of Eqs. (27) indicates that only certain 
regions of the parameters sg and a3

(0) can be allowed; 
the requirement that c(0)2, d(0)2, and e(0)2 all be non-
negative implies that the regions for the search should 
be as shown in Fig. 1. The curves labeled a% max

(0) and 
#3 i (0) are defined by: 

a>% J 
(0) = :VG«, 

O8,nin ( 0 ) =(l -W0/[G8(1-1?4)] . (30) 

The lines 171= 1, 773=1, and ?74=1 form part of the 
boundaries. The best possible fit occurs for: 

Sg = 

ai<°> = 

a3
( 0 ) = 

c ( 0 ) 2 = = 

d<M= 

^(0)2 = 

ai<2> = -

- 4 0 
45.4 

104 

0.19 

56.6 

45.9 

-158 

(31) 

and yields the result ^02=0.262. In Fig. 2 a map is given 
in which the result of computing A(0) and — 2A(2) for 
each (s,t) point in the grid is plotted as a point in the 
(A(0), — 2A(2)) plane. The quantity ^02 measures the 
average sine of the angle of departure from a perfect 
fit. The position of the ghost is determined to be in the 
neighborhood of the position conjectured by Chew and 
Frautschi.3 As tacitly assumed in I, the (KK) coupling 
to (ww) is very small. 

The phase shifts for T=0 are determined by com­
puting : 

tan$i<°>= - Im3V°yRe2V 0 > (32) 

below the (KK) threshold, and 

tan Re5z
(0) = -Im(OTliii<

0>*3Di<
0>)/Re(9flzIii»>*a)/0>) (33) 

above the (KK) threshold. For T—2 the formula is 

tan5z
(2) = -JmDi<27ReZV2 ) . (34) 

The results of these calculations for s and d waves are 
given in Fig. 3. 

The s-wave scattering length for T=0 is given by 

(o)-i — 
L W + 1 / J._4 

=H[al^+d^2T4+c^2Tz(i-T,/GAy 

xCi-r8(fl8(0)+e(0)2r4)]-1]r-1-ri}: 

and, for T=2, by 

a .w- 1 = 4 ( l / a 1 < « - r 1 ) l 

in which the TVs are defined by 

r , - i 7 / ^ ° ) ( 4 ) . 

The results of the calculations are 

0,<°>=-1.56, 

a .< 2>=-1.33, 

(35) 

(36) 

(37) 

(38) 

in which the T=0 figure is very nearly the same as that 
given by 

< ° ) - 1 « 4 ( l / a i C 0 ) ~ r 1 ) . (39) 

I t should be pointed out that the T= 0 scattering length 
lies, for all parameters in the allowed regions of the 
search (Fig. 1), in the range —1.60 to —1.35, so that 
no choice of parameters leads to agreement with the 
number deduced from the ABC experiments8: #s

(0) 

= (2dzl)h/iJLCy and with the number deduced from an 
analysis9 of r decay which includes ^-wave TT-TT inter­
action: a.<°> = 1.96. 

The phase shift 5o(0) is shown in Fig. 3 to decrease 
through — | x at s=11.4 (cm. energy 473 MeV). This 

F I G . 2. M a p of A<°> versus -2A<2>. 

8 N. E. Booth and A. Abashian, Phys. Rev. 132, 2314 (1963). 
9 M. A. Baqi Beg and P. C. DeCelles, Phys. Rev. Letters 8, 46 

(1962). 



T = 0 P I O N - P I O N S C A T T E R I N G B1069 

is not far from the position of the s-wave T=0 resonance 
conjectured by Brown and Singer10 to give agreement 
to 37r decay modes of the t\ and K mesons. Experimental 
evidence u also exists for this resonance. The phenome­
non at 473 MeV in this calculation, however, is not a 
resonance and therefore does not lend itself to com­
parison with Brown and Singer's analysis in spite of 
the fact that their width parameter enters squared 
throughout their calculations. 

The phase shift 5o(2) has a real part far from Jx at 
the mass of the /°.1 2 This may not be discouraging in 
view of the fact that there exists the well-documented 
conjecture13 that the f° might in fact be the neutral 
member of the p' or Buddha resonance.14 Hopefully 
the p' would show up in the r==l p wave but most 
likely not without inclusion of the (pp) channel. That 
the p should occur in the T= 1 p wave is safe to assume 
from experience in I. 

4. OTHER TRIAL FUNCTIONS 

The possibility that another choice of trial functions 
might be worth trying suggests itself. A choice having 
entirely different physical significance will be discussed 
in this section. A one-channel model of scalar meson 
scattering will be presented first to provide orientation 
for the 7T7T problem. 

FIG. 3. s- and d-wa,ve phase shifts. 

10 L. M. Brown and P. Singer, Phys. Rev. 133, B812 (1964). 
11N. P. Samios, A. H. Bachman, R. M. Lea, T. E. Kaloger-

opoulos, and D. Shepard, Phys. Rev. Letters 9, 139 (1962). 
12 See, e.g., W. Selove, V. Hagopian, H. Brody, A. Baker, and 

E. Leboy, Phys. Rev. Letters 9, 272 (1962). 
13 W. R. Frazer, S. H. Patil, and N. Xuong, Phys. Rev. Letters 

12, 178 (1964); see also, however, Y. Y. Lee, B. P. Roe, D. Sinclair, 
and J. C. Vander Velde, ibid. 12, 342 (1964). 

14 M. Abolins, R. L. Lander, W. A. W. Mehlhop, N. Xuong, 
and P. M. Yager, Phys. Rev. Letters 11, 381 (1963). 
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FIG. 4. Path of /x\(z) in fj, plane corresponding to 
path of z in z plane. 

A. Scalar Meson Scattering 

A one-channel model for a variational approach to 
this problem might be defined by 

with 

in which 

Mi=Nl/Dl 

Nt=aQi(\)/2p* 

X=J(A+1/A) 

(40) 

(41) 

(42) 

and in which h is the Khuri threshold factor appropriate 
to one meson exchange: 

A = [ ( 5 - 3 ) i / 2 - l ] / [ ( * - 3 ) w + l ] . (43) 

The argument X then becomes 

X = l + ( l / 2 ^ 2 ) (44) 

so that the threshold behavior is given by 

Qi{\)/{2p*)^p*K (45) 

The primary consideration in the choice (41) can 
be seen by looking at first Born approximation 

MBorn(l)= E (21+\)N1P1(Z) 
I even 

= ( a / ( 4 ^ ) ) ( l / ( X - z ) + l / ( A + 2 ) ) 

= i a ( l / ( l - / ) + l / ( l - „ ) ) . (46) 

That is, first Born approximation yields the one-meson 
exchange poles in the crossed channels. The denomi­
nator function is 

Dt=l-dlt 

where 
a rx ds' p' 

27rJ4 s'-sp'2 

(47) 

(48) 
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where primes denote functions of sf. Second Born 
approximation is obtained from the second term in the 
expansion of Lt'1: 

Dr^l+di, (49) 

and yields [neglecting the symmetrization performed 
in (46)] 

MBorn<2) = ~ £ (2l+l)Pl(z)Ql()i)— 
If i 2x 

r ds' P' 

x - — - e , ( x o . (50) 
J s'-sp'2 

The imaginary part is, for s > 4 and X= 1+1/(2p2) 
2 

ImMBom(2) = — E (2l+l)Pi(z)ZQiO<)J. (51) 
4?r^4 * 

The sum can be written 

£ (2;+i)p i(z)K i(x)]2 

— P « 0 * ) K J ( « X - (*2- D1/2(x2-1)1/2) 
-iX—ju 

- 2 £ (-)-g,-(X)Pr,"(a)]. (52) 
ra=l 

The first part of this expression can be summed for 
1 < 2 < \ to give 

rl dn 1 r1 dfx 1 
J E I Pi&0GiG*x(*))=- / — - , (53) 

i J-iX—fx 2 J-i\—fxfi\(z)— ix 

where 

Mx(a) = aX— ( s 2 - l ) 1 ^ 2 - 1 ) 1 / 2 . (54) 

Now continue in 2 along the path indicated in Fig. 4; 
the pole at n=n\(z) can be found to deform the contour 
of integration as shown in the figure, until the contour 
is pinched against the other pole at n=X as z—> z\. 
The point Z\ is given by 

*x=2X*-l . (55) 

The position of this singularity in the t plane is given by 

t(s) = -2p2(l-zx) 
= 4 ( ( , - 3 ) / ( , - 4 ) ) ; (56) 

this is the equation of the Mandelstam spectral curve 
for the scalar meson-box diagram. So, as in I, the choice 
of trial function (41) reflects desired analytic properties 
of the full amplitude. 

The parameter a can now be varied to obtain a fit 

to the crossing relation 

M(s,t) = M(t,s). (57) 

The summation of the partial waves is limited to the 
region 3 < s < 4 and 3 < / < 4 . The search yields the 
result: 

i / w = 0 . 4 6 4 with <z=6.32. 

One can now look at the s-wave amplitude with this 
value of a and ask whether unitarity and crossing have 
succeeded in dynamically generating the scalar meson 
as an s-wave bound state. The function Do vanishes at 
s— — 2.6, corresponding to a ghost rather than a bound 
state. This calamity is presumably attributable to the 
fact that crossing can only be investigated in a small 
region which is too near the limit of convergence of 
the partial-wave series. 

B. Pion-Pion Scattering 

Analogously, the following model can be tried for 
the many-channel TTT problem, the channels being the 
same as specified in Sec. 2. The model is defined by 
taking N—a, the parameter matrix, in the expression 

Mi,i,-=qi(ND-%-qi, (58) 
where 

^ = ( l / ( 2 ^ ) { & ( A . - ) + ( 2 V ( p 2 - W ) ) 

XLQtCKd-QiMl), (59) 
in which 

A<=£(*i+1/A*), (60) 

^hiki+1/kt), (61) 

hi is the Khuri threshold factor for p exchange between 
the particles in state i, and ki is the Khuri factor for 
2TT exchange between the same particles. Both are 
incorporated to give a ^>-wave pole in first Born ap­
proximation at the mass of the p in the crossed channels. 

If now one tries to impose the ghost constraints as in 
Sec. 2, one finds that there are no allowed regions of 
the two unconstrained parameters. That is, the ghost 
constraints cannot be imposed and the number of r = 0 
parameters cannot be reduced. A search with the full 
number of parameters is not feasible and so this model 
has been abandoned. 
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